Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Apr 09 2016 17:14:25
%S 3137,199211,523541,16691693,1393313963,2428124317,3498135023,
%T 7318973237,4028940343,191353191413,221327221393,507217507289,
%U 937253937331,10402271040311,843911844001,25654632565559,81661078166209,55778515577959,82237498223863
%N a(n) is the least term of A030461 with gap = 6*n between consecutive primes or 0 if no such term exists.
%C Subsequence of A030461.
%C a(n) is the concatenation of the smallest prime p and the next prime q, such that p + 6n = q and the concatenations of these 2 primes is also prime. a(n) = 0 if no such term exists.
%H Jean-Marc Rebert, <a href="/A267721/b267721.txt">Table of n, a(n) for n = 1..32</a>
%e a(1) = A030461(2) = 3137. gap = 37 - 31 = 6 = 6 * 1.
%e a(2) = 199211, because 199211 is the first term in A030461, with gap = 211 - 199 = 12 = 6 * 2.
%p Primes:= select(isprime,[seq(i,i=3..10^7,2)]):
%p cati:= (x,y) -> 10^(1+ilog10(y))*x+y;
%p for i from 1 to nops(Primes)-1 do
%p g:= Primes[i+1]-Primes[i];
%p if g mod 6 <> 0 then next fi;
%p if assigned(A[g/6]) then next fi;
%p z:= cati(Primes[i],Primes[i+1]);
%p if isprime(z) then A[g/6]:= z fi;
%p od:
%p seq(A[i],i=1..max(map(op,[indices(A)]))); # _Robert Israel_, Jan 24 2016
%Y Cf. A030459, A030460, A030461, A058193, A267692.
%K base,nonn
%O 1,1
%A _Jean-Marc Rebert_, Jan 20 2016