login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267678
Decimal representation of the n-th iteration of the "Rule 197" elementary cellular automaton starting with a single ON (black) cell.
2
1, 2, 20, 104, 468, 1960, 8020, 32424, 130388, 522920, 2094420, 8383144, 33543508, 134195880, 536827220, 2147396264, 8589759828, 34359388840, 137438254420, 549754415784, 2199020459348, 8796087429800, 35184360904020, 140737465985704, 562949908682068
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 19 2016: (Start)
a(n) = 6*a(n-1)-7*a(n-2)-6*a(n-3)+8*a(n-4) for n>5.
G.f.: (1-4*x+15*x^2+4*x^3-12*x^4-16*x^5) / ((1-x)*(1+x)*(1-2*x)*(1-4*x)).
(End)
Conjecture: a(n) = 2*(-3 + (-1)^n - 2^(2+n) + 3*4^n)/3 for n>1. - Colin Barker, Feb 14 2017
Conjecture: a(n) = floor((6*4^n - 8*2^n)/3) - 2^(n mod 2) for n > 1. - Karl V. Keller, Jr., Jun 01 2022
MATHEMATICA
rule=197; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A035599 A222556 A103101 * A009357 A052361 A001884
KEYWORD
nonn
AUTHOR
Robert Price, Jan 19 2016
STATUS
approved