login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267677
Binary representation of the n-th iteration of the "Rule 197" elementary cellular automaton starting with a single ON (black) cell.
2
1, 10, 10100, 1101000, 111010100, 11110101000, 1111101010100, 111111010101000, 11111110101010100, 1111111101010101000, 111111111010101010100, 11111111110101010101000, 1111111111101010101010100, 111111111111010101010101000, 11111111111110101010101010100
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 19 2016 and Apr 20 2019: (Start)
a(n) = 110*a(n-1)-999*a(n-2)-110*a(n-3)+1000*a(n-4) for n>5.
G.f.: (1-100*x+9999*x^2+100*x^3-9900*x^4-10000*x^5) / ((1-x)*(1+x)*(1-10*x)*(1-100*x)).
(End)
MATHEMATICA
rule=197; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A119037 A327232 A266841 * A101305 A001098 A266872
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 19 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved