login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267573
a(n) = prime(n) + (prime(n) mod 4).
1
4, 6, 6, 10, 14, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 62, 62, 70, 74, 74, 82, 86, 90, 98, 102, 106, 110, 110, 114, 130, 134, 138, 142, 150, 154, 158, 166, 170, 174, 182, 182, 194, 194, 198, 202, 214, 226, 230, 230, 234, 242, 242, 254, 258, 266, 270
OFFSET
1,1
COMMENTS
The primes corresponding to the cases where a(n) = a(n+1) can be found in A071698. - Michel Marcus, Jan 17 2016
LINKS
FORMULA
a(n) = A000040(n) + A039702(n).
a(n) = A083220(prime(n)). - Michel Marcus, Jan 17 2016
EXAMPLE
p=19; 19 + (19 modulo 4) = 22.
MAPLE
A267573:=n->ithprime(n)+(ithprime(n) mod 4): seq(A267573(n), n=1..100); # Wesley Ivan Hurt, Jan 17 2016
MATHEMATICA
Table[Prime[n] + Mod[Prime[n], 4], {n, 60}] (* Vincenzo Librandi, Jan 17 2016 *)
#+Mod[#, 4]&/@Prime[Range[60]] (* Harvey P. Dale, Jun 12 2020 *)
PROG
(Magma) [NthPrime(n)+(NthPrime(n) mod 4): n in [1..100]]; // Vincenzo Librandi, Jan 17 2016
(PARI) a(n) = prime(n) + (prime(n) % 4); \\ Michel Marcus, Jan 17 2016
(PARI) lista(nn) = forprime(p=2, nn, print1(p + p % 4, ", ")); \\ Altug Alkan, Jan 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emre APARI, Jan 17 2016
EXTENSIONS
More terms from Vincenzo Librandi, Jan 17 2016
STATUS
approved