login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267514
Binary representation of the middle column of the "Rule 137" elementary cellular automaton starting with a single ON (black) cell.
2
1, 10, 101, 1010, 10101, 101010, 1010100, 10101001, 101010010, 1010100101, 10101001010, 101010010101, 1010100101010, 10101001010100, 101010010101001, 1010100101010010, 10101001010100101, 101010010101001010, 1010100101010010101, 10101001010100101010
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
a(n) = A007088(A267515(n)). - R. J. Mathar, Apr 12 2019
Conjectures from Colin Barker, Jan 16 2016: (Start)
a(n) = 10*a(n-1)+a(n-7)-10*a(n-8) for n>7.
G.f.: (1-x+x^2)*(1+x+x^2) / ((1-x)*(1-10*x)*(1+x+x^2+x^3+x^4+x^5+x^6)).
(End)
This conjectured linear recurrence fails to predict the correct values from a(62) on. - R. J. Mathar, Apr 12 2019
MATHEMATICA
rule=137; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k]], {k, 1, rows}] (* Binary Representation of Middle Column *)
CROSSREFS
Cf. A267463.
Sequence in context: A303596 A266612 A267588 * A279809 A279749 A056830
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 16 2016
STATUS
approved