login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267503
Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 5 are also in the sequence.
5
2, 3, 7, 11, 23, 31, 43, 47, 67, 71, 139, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 947, 967, 1291, 1303, 1319, 1367, 1427, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2531, 3011, 3083, 4099, 4423, 4643, 4691, 4831, 5171, 5179, 5683, 5839, 6299, 6911, 7283, 7591, 8563, 8863, 9227, 9871, 9931, 10343, 10627, 11887, 11923, 12911
OFFSET
1,1
COMMENTS
Is this sequence infinite?
LINKS
MAPLE
N:= 20000: # to get all terms <= N
Res:= 2:
Agenda:= {3, 11}:
P:= {2, 10}:
g:= proc(t) local s; s:= p*t; if s < N then s else NULL fi end proc:
while Agenda <> {} do
p:= min(Agenda);
Res:= Res, p;
newP:= map(g , P);
P:= P union newP;
Agenda:= Agenda minus {p} union select(isprime, map(`+`, newP, 1));
od:
Res; # Robert Israel, Mar 15 2019
MATHEMATICA
fa = FactorInteger; is[2, p_] = True; is[2, p_];
is[n_, p_] := PrimeQ[n] && MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 5] &]
KEYWORD
nonn
AUTHOR
STATUS
approved