|
|
A267478
|
|
Primes which are squares (mod 55).
|
|
1
|
|
|
5, 11, 31, 59, 71, 89, 179, 181, 191, 199, 229, 251, 269, 311, 331, 379, 389, 401, 419, 421, 449, 499, 509, 521, 599, 619, 631, 641, 661, 691, 709, 719, 751, 829, 839, 859, 881, 911, 929, 971, 991, 1021, 1039, 1049, 1061, 1109, 1171, 1181, 1259, 1279, 1291, 1301, 1321, 1409, 1439, 1489, 1499
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
5, 11 and all primes congruent to 1, 4, 9, 14, 16, 26, 31, 34, 36, or 49 (mod 55). - Robert Israel, Jan 15 2016
|
|
LINKS
|
Table of n, a(n) for n=1..57.
|
|
MAPLE
|
S55:= {seq(x^2 mod 55, x=0..27)}:
select(t -> member(t mod 55, S55), [seq(ithprime(i), i=1..1000)]); # Robert Israel, Jan 15 2016
|
|
MATHEMATICA
|
Join[{5, 11}, Select[Prime[Range[250]], MemberQ[{1, 4, 9, 14, 16, 26, 31, 34, 36, 49}, Mod[#, 55]]&]] (* Harvey P. Dale, Jan 17 2022 *)
|
|
PROG
|
(PARI) select(p->issquare(Mod(p, 55))&&isprime(p), [1..1500]) \\ It would be more efficient to select only among primes, replacing [1..1500] by primes([1, 1500]), in which case the isprime() condition can be omitted from the selection function. But we wanted to provide a universally valid characteristic function in the 1st argument of select(). - M. F. Hasler, Jan 15 2016
|
|
CROSSREFS
|
Cf. A106904 and adjacent sequences.
Cf. A191036.
Sequence in context: A052228 A105910 A023259 * A280081 A057470 A038580
Adjacent sequences: A267475 A267476 A267477 * A267479 A267480 A267481
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
M. F. Hasler, Jan 15 2016
|
|
STATUS
|
approved
|
|
|
|