The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267360 Decimal representation of the n-th iteration of the "Rule 125" elementary cellular automaton starting with a single ON (black) cell. 2
 1, 3, 28, 47, 496, 575, 8000, 9215, 128000, 147455, 2048000, 2359295, 32768000, 37748735, 524288000, 603979775, 8388608000, 9663676415, 134217728000, 154618822655, 2147483648000, 2473901162495, 34359738368000, 39582418599935, 549755813888000, 633318697598975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Price, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55. Index entries for linear recurrences with constant coefficients, signature (0,17,0,-16). FORMULA Conjectures from Colin Barker, Jan 14 2016 and Apr 19 2019: (Start) a(n) = 17*a(n-2)-16*a(n-4) for n>8. G.f.: (1+3*x+11*x^2-4*x^3+36*x^4-176*x^5+16*x^6+192*x^7-64*x^8) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)). (End) MATHEMATICA rule=125; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* decimal representation of rows *) CROSSREFS Cf. A267358, A267359. Sequence in context: A157848 A225674 A253653 * A046104 A116984 A229055 Adjacent sequences: A267357 A267358 A267359 * A267361 A267362 A267363 KEYWORD nonn,easy AUTHOR Robert Price, Jan 13 2016 EXTENSIONS Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 08:31 EST 2022. Contains 358605 sequences. (Running on oeis4.)