login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267359
Binary representation of the n-th iteration of the "Rule 125" elementary cellular automaton starting with a single ON (black) cell.
2
1, 11, 11100, 101111, 111110000, 1000111111, 1111101000000, 10001111111111, 11111010000000000, 100011111111111111, 111110100000000000000, 1000111111111111111111, 1111101000000000000000000, 10001111111111111111111111, 11111010000000000000000000000
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 14 2016 and Apr 19 2019: (Start)
a(n) = 10001*a(n-2) - 10000*a(n-4) for n > 8.
G.f.: (1 + 11*x + 1099*x^2 - 8900*x^3 + 108900*x^4 - 10990000*x^5 + 890000*x^6 + 11000000*x^7 - 1000000*x^8) / ((1 - x)*(1 + x)*(1 - 100*x)*(1 + 100*x)).
(End)
MATHEMATICA
rule=125; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* binary representation of rows *)
CROSSREFS
Sequence in context: A068223 A068224 A066945 * A267940 A113615 A034873
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 13 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved