login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267242
Number of nX5 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
1
6, 34, 232, 1986, 20040, 220235, 2499080, 28501471, 323067002, 3626695952, 40306404192, 443852375808, 4848323701804, 52590398731297, 567018802063680, 6081537709403509, 64929807220896558, 690446673537426382
OFFSET
1,1
COMMENTS
Column 5 of A267245.
LINKS
Index entries for linear recurrences with constant coefficients, signature (52, -1196, 16140, -142918, 879116, -3875668, 12442580, -29232481, 50015232, -61355336, 52355680, -29405200, 9744000, -1440000).
FORMULA
Empirical: a(n) = 52*a(n-1) -1196*a(n-2) +16140*a(n-3) -142918*a(n-4) +879116*a(n-5) -3875668*a(n-6) +12442580*a(n-7) -29232481*a(n-8) +50015232*a(n-9) -61355336*a(n-10) +52355680*a(n-11) -29405200*a(n-12) +9744000*a(n-13) -1440000*a(n-14).
Empirical formula verified (see link). - Robert Israel, Sep 08 2019
EXAMPLE
Some solutions for n=4
..0..0..0..0..1....0..0..0..1..1....0..0..0..1..1....0..0..0..0..1
..0..0..0..1..0....0..1..1..0..0....0..1..1..0..0....0..0..0..1..0
..0..1..1..0..0....0..0..1..1..1....1..1..1..0..1....0..0..0..0..1
..1..0..1..1..1....1..0..1..0..1....1..1..1..1..0....0..1..1..1..0
MAPLE
S[2]:= [[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]]:
for i from 3 to 5 do
S[i]:= map(proc(t) [op(t[1..i-1]), t[i-1], op(t[i..-1]), 0], [op(t[1..i-1]), t[i-1], op(t[i..-1]), 1],
[op(t[1..i-1]), 1-t[i-1], op(t[i..-1]), 1] end proc, S[i-1])
od:
states:= S[5]:
T:= Matrix(162, 162, proc(i, j) local k;
if add(states[j, k]-states[i, k], k=1..5) > 0 then return 0 fi;
for k from 6 to 9 do if states[j, k]>states[i, k] then return 0 fi od;
for k from 1 to 4 do if states[i, k]>=states[i, k+1] and states[j, k+5]<>states[i, k+5] then return 0 fi od;
1
end proc):
E:= Vector(162): E[1]:= 1:
U[0]:= Vector[row](162, 1):
for k from 1 to 25 do U[k]:= U[k-1].T od:
seq(U[j] . E, j=1..25); # Robert Israel, Sep 08 2019
CROSSREFS
Cf. A267245.
Sequence in context: A216317 A370324 A230331 * A197436 A334787 A302148
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2016
STATUS
approved