login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267240
Number of n X 3 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
1
4, 13, 42, 141, 486, 1685, 5804, 19769, 66544, 221581, 730918, 2391717, 7772610, 25110933, 80713016, 258280817, 823269116, 2615088973, 8281113730, 26150883901, 82375282494, 258893742933, 811984918692, 2541865829801, 7943330715176
OFFSET
1,1
FORMULA
Empirical: a(n) = 10*a(n-1) - 39*a(n-2) + 76*a(n-3) - 79*a(n-4) + 42*a(n-5) - 9*a(n-6).
Conjectures from Colin Barker, Jan 11 2019: (Start)
G.f.: x*(4 - 27*x + 68*x^2 - 76*x^3 + 42*x^4 - 9*x^5) / ((1 - x)^4*(1 - 3*x)^2).
a(n) = (24 + (31+3^(2+n))*n + 12*n^2 + 2*n^3) / 24.
(End)
Empirical recurrence verified (see link). - Robert Israel, Sep 08 2019
EXAMPLE
Some solutions for n=4:
..0..0..1....0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..0....0..1..0....0..1..1....0..0..1....0..1..0....0..0..1....1..1..0
..1..0..0....1..1..0....1..0..1....0..1..1....0..0..1....0..0..1....0..1..1
..1..1..0....1..1..1....0..1..1....0..1..1....0..0..1....1..1..0....1..0..1
CROSSREFS
Column 3 of A267245.
Sequence in context: A175005 A070031 A082989 * A192802 A149425 A047144
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2016
STATUS
approved