login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267159
Total number of ON (black) cells after n iterations of the "Rule 107" elementary cellular automaton starting with a single ON (black) cell.
1
1, 2, 5, 10, 16, 24, 31, 44, 50, 65, 73, 94, 100, 123, 131, 160, 166, 197, 205, 242, 248, 287, 295, 340, 346, 393, 401, 454, 460, 515, 523, 584, 590, 653, 661, 730, 736, 807, 815, 892, 898, 977, 985, 1070, 1076, 1163, 1171, 1264, 1270, 1365, 1373, 1474, 1480
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 11 2016 and Apr 19 2019: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3)+a(n-4)-a(n-5)-a(n-6)+a(n-7) for n>12.
G.f.: (1+x+2*x^2+4*x^3+2*x^4+2*x^5-x^6+x^7-4*x^8-x^9+x^10+x^11-x^12) / ((1-x)^3*(1+x)^2*(1+x^2)).
(End)
MATHEMATICA
rule=107; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A267152.
Sequence in context: A131938 A031871 A026056 * A084587 A001859 A011903
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 11 2016
STATUS
approved