login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267157
Decimal representation of the middle column of the "Rule 107" elementary cellular automaton starting with a single ON (black) cell.
1
1, 2, 4, 9, 19, 39, 79, 159, 319, 639, 1278, 2557, 5114, 10229, 20458, 40917, 81834, 163669, 327338, 654677, 1309354, 2618709, 5237418, 10474837, 20949674, 41899349, 83798698, 167597397, 335194794, 670389589, 1340779178, 2681558357, 5363116714, 10726233429
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 11 2016 and Apr 19 2019: (Start)
a(n) = (-(-1)^n+959*2^(n-7)-3)/6 for n>7.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3) for n>4.
G.f.: (1-x^2+x^3+x^4-x^10) / ((1-x)*(1+x)*(1-2*x)).
(End)
MATHEMATICA
rule=107; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}] (* Binary Representation of Middle Column *)
CROSSREFS
Cf. A267152.
Sequence in context: A056186 A265387 A293322 * A054135 A171858 A099568
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 11 2016
STATUS
approved