login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267016
Numbers that satisfy: (isqrt(n)-1)! = isqrt(n)-1 mod isqrt(n).
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181
OFFSET
1,2
COMMENTS
Numbers n such that A000196(n) is in A008578 (i.e. is either 1 or prime). - Robert Israel, Jan 09 2016
LINKS
EXAMPLE
For n = 26 it follows:
i = isqrt(26) = 5
(i-1)! = 24
(i-1)! = i-1 mod i
24 = 4 mod 5
MAPLE
seq(`if`(t=1 or isprime(t), seq(i, i=t^2..(t+1)^2-1), NULL), t=1..100); # Robert Israel, Jan 09 2016
MATHEMATICA
Select[Range@ 181, Function[n, Mod[(# - 1)!, #] == # - 1 &@ IntegerPart@ Sqrt@ n]] (* Michael De Vlieger, Jan 09 2016 *)
PROG
(Sidef)
10000.times { |n|
var i = n.isqrt;
if ((i-1)! % i == i-1) {
say n
}
}
(PARI) lista(nn) = for(n=1, nn, if(Mod((sqrtint(n)-1)!, sqrtint(n)) == sqrtint(n)-1, print1(n, ", "))); \\ Altug Alkan, Jan 12 2016
CROSSREFS
Sequence in context: A084688 A194898 A331271 * A023769 A023796 A032950
KEYWORD
nonn,easy
AUTHOR
Daniel Suteu, Jan 08 2016
STATUS
approved