login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266698
x-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.
3
3, 45, 717, 11427, 182115, 2902413, 46256493, 737201475, 11748967107, 187246272237, 2984191388685, 47559815946723, 757972863758883, 12080006004195405, 192522123203367597, 3068273965249686147, 48899861320791610755, 779329507167416085933, 12420372253357865764173, 197946626546558436140835
OFFSET
1,1
COMMENTS
A159678 gives the y-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.
FORMULA
a(1)=3, a(2)=45, a(n) = 16*a(n-1) - a(n-2).
a(n) = A041008(4n-2). - Robert Israel, Jan 05 2016
From R. J. Mathar, Jan 12 2016: (Start)
G.f.: 3*x*(1-x) / ( 1-16*x+x^2 ).
a(n) = 3*A157456(n). (End)
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = 3*(ChebyshevU(n-1, 8) - ChebyshevU(n-2, 8)).
E.g.f.: exp(8*x)*(3*cosh(3*sqrt(7)*x) - sqrt(7)*sinh(3*sqrt(7)*x)) - 3. (End)
MATHEMATICA
LinearRecurrence[{16, -1}, {3, 45}, 20 ]
PROG
(PARI) lista(nn) = {print1(x = 3, ", "); print1(y = 45, ", "); for (n=2, nn, z = 16*y - x; print1(z, ", "); x = y; y = z; ); } \\ Michel Marcus, Jan 05 2016
(Magma) [n: n in [1..2*10^7] | IsSquare((n^2-2)/7)]; // Vincenzo Librandi, Jan 06 2016
(SageMath) [3*(chebyshev_U(n-1, 8) - chebyshev_U(n-2, 8)) for n in (1..30)] # G. C. Greubel, Jun 25 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Jan 03 2016
STATUS
approved