login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266651
Nonnegative integers x such that x^3 + 6^3 is a sum of two squares.
2
14, 21, 62, 190, 206, 210, 237, 286, 334, 350, 382, 398, 426, 430, 446, 453, 574, 622, 670, 734, 766, 777, 782, 878, 958, 974, 1102, 1294, 1317, 1342, 1438, 1486, 1678, 1694, 1722, 1749, 1774, 1790, 1938, 1965, 1966, 2014, 2030, 2110, 2126, 2154, 2222, 2254, 2270, 2289, 2302, 2397, 2414, 2446, 2558, 2638, 2686, 2721, 2734, 2750
OFFSET
1,1
COMMENTS
Conjecture: For any integer x with gcd(x,6) = 1, the number x^3 + 6^3 is never a sum of two squares.
We have verified this for x up to 5*10^6.
Note also that 6^3 + (-2)^3 = 8^2 + 12^2.
Hao Pan at Nanjing Univ. confirmed the conjecture on Jan. 3, 2016. - Zhi-Wei Sun, Jan 06 2016
EXAMPLE
a(1) = 14 since 14^3 + 6^3 = 16^2 + 52^2.
a(7) = 237 since 237^3 + 6^3 = 162^2 + 3645^2.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Le[n_]:=Le[n]=Length[f[n]]
n=0; Do[Do[If[Mod[Part[Part[f[x^3+6^3], i], 1], 4]==3&&Mod[Part[Part[f[x^3+6^3], i], 2], 2]==1, Goto[aa]], {i, 1, Le[216+x^3]}]; n=n+1; Print[n, " ", x]; Label[aa]; Continue, {x, 0, 2750}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 02 2016
STATUS
approved