Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 03 2021 09:14:18
%S 1,101,0,1111111,0,11111111111,0,111111111111111,0,
%T 1111111111111111111,0,11111111111111111111111,0,
%U 111111111111111111111111111,0,1111111111111111111111111111111,0,11111111111111111111111111111111111,0,111111111111111111111111111111111111111
%N Binary representation of the n-th iteration of the "Rule 19" elementary cellular automaton starting with a single ON (black) cell.
%H Robert Price, <a href="/A266323/b266323.txt">Table of n, a(n) for n = 0..500</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10001,0,-10000).
%F From _Colin Barker_, Dec 28 2015 and Apr 15 2019: (Start)
%F a(n) = 10001*a(n-2) - 10000*a(n-4) for n>5.
%F G.f.: (1+101*x-10001*x^2+101010*x^3+10000*x^4-100000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
%F (End)
%F a(n) = (10*100^n - 1)/9*(n mod 2) + 0^n - 10*0^abs(n-1). - _Karl V. Keller, Jr._, Sep 02 2021
%t rule=19; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *)
%o (Python) print([(10*100**n - 1)//9*(n%2) + 0**n - 10*0**abs(n-1) for n in range(50)]) # _Karl V. Keller, Jr._, Sep 02 2021
%Y Cf. A266155, A266324.
%K nonn,easy
%O 0,2
%A _Robert Price_, Dec 27 2015