login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266323
Binary representation of the n-th iteration of the "Rule 19" elementary cellular automaton starting with a single ON (black) cell.
3
1, 101, 0, 1111111, 0, 11111111111, 0, 111111111111111, 0, 1111111111111111111, 0, 11111111111111111111111, 0, 111111111111111111111111111, 0, 1111111111111111111111111111111, 0, 11111111111111111111111111111111111, 0, 111111111111111111111111111111111111111
OFFSET
0,2
FORMULA
From Colin Barker, Dec 28 2015 and Apr 15 2019: (Start)
a(n) = 10001*a(n-2) - 10000*a(n-4) for n>5.
G.f.: (1+101*x-10001*x^2+101010*x^3+10000*x^4-100000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n - 1)/9*(n mod 2) + 0^n - 10*0^abs(n-1). - Karl V. Keller, Jr., Sep 02 2021
MATHEMATICA
rule=19; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
PROG
(Python) print([(10*100**n - 1)//9*(n%2) + 0**n - 10*0**abs(n-1) for n in range(50)]) # Karl V. Keller, Jr., Sep 02 2021
CROSSREFS
Sequence in context: A279699 A279602 A168588 * A280372 A181721 A277917
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 27 2015
STATUS
approved