login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266295
2-free tetranacci sequence beginning 1,3,5,7.
1
1, 3, 5, 7, 1, 1, 7, 1, 5, 7, 5, 9, 13, 17, 11, 25, 33, 43, 7, 27, 55, 33, 61, 11, 5, 55, 33, 13, 53, 77, 11, 77, 109, 137, 167, 245, 329, 439, 295, 327, 695, 439, 439, 475, 1, 677, 199, 169, 523, 49, 235, 61, 217, 281, 397, 239, 567, 371, 787
OFFSET
1,2
COMMENTS
For n>4, a(n) = (a(n-1) + a(n-2) + a(n-3) + a(n-4)) / 2^d, where 2^d is the largest power of 2 dividing a(n-1) + a(n-2) + a(n-3) + a(n-4). In other words, sum the previous four terms, then divide by two until the result is odd.
REFERENCES
Alm, Herald, Miller, and Sexton, 2-Free Tetranacci Sequences, unpublished.
LINKS
FORMULA
a(n) = (a(n-1) + a(n-2) + a(n-3) + a(n-4)) / 2^d, where 2^d is the largest power of 2 dividing a(n-1) + a(n-2) + a(n-3) + a(n-4).
a(n) = A000265(a(n-1) + a(n-2) + a(n-3) + a(n-4)). - Michel Marcus, Dec 29 2015
MATHEMATICA
nxt[{a_, b_, c_, d_}] := {b, c, d, (a + b + c + d)/2^IntegerExponent[ a + b + c + d, 2]}; NestList[nxt, {1, 3, 5, 7}, 60][[All, 1]] (* Harvey P. Dale, Nov 09 2020 *)
PROG
(Python)
### CREATES A b-FILE ###
def main():
name = "b266295.txt"
file = open(name, 'w')
file.write('1' + ' ' + '1\n')
file.write('2' + ' ' + '3\n')
file.write('3' + ' ' + '5\n')
file.write('4' + ' ' + '7\n')
a, b, c, d = 1, 3, 5, 7
for i in range(5, 10001):
x=a+b+c+d
while x%2==0:
x /= 2
a, b, c, d = b, c, d, x
file.write(str(i) + ' ' + str(int(d)) + '\n')
file.close()
main()
(PARI) lista(nn) = {print1(x = 1, ", "); print1(y = 3, ", "); print1(z = 5, ", "); print1(t = 7, ", "); for (n=5, nn, tt = (x+y+z+t); tt /= 2^valuation(tt, 2); print1(tt, ", "); x=y; y=z; z=t; t=tt; ); } \\ Michel Marcus, Dec 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy F. Alm, Dec 28 2015
STATUS
approved