Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 19 2021 09:48:07
%S 1,0,5,96,29,1952,29,32672,29,524192,29,8388512,29,134217632,29,
%T 2147483552,29,34359738272,29,549755813792,29,8796093022112,29,
%U 140737488355232,29,2251799813685152,29,36028797018963872,29,576460752303423392,29,9223372036854775712
%N Decimal representation of the n-th iteration of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266245/b266245.txt">Table of n, a(n) for n = 0..999</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,17,0,-16).
%F From _Colin Barker_, Dec 28 2015 and Apr 14 2019: (Start)
%F a(n) = 17*a(n-2)-16*a(n-4) for n>7.
%F G.f.: (1-12*x^2+96*x^3-40*x^4+320*x^5-384*x^6+1024*x^7) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
%F (End)
%F a(n) = 4^n/2 + 90*floor(4^n/60) - 90 for odd n>3; a(n) = 29 for even n>3. - _Karl V. Keller, Jr._, Aug 17 2021
%t rule=9; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
%o (Python) print([1, 0, 5, 96]+[4**n//2 + 90*(4**n//60) - 90 if n%2 else 29 for n in range(4,50)]) # _Karl V. Keller, Jr._, Aug 17 2021
%Y Cf. A266243, A266244.
%K nonn,easy
%O 0,3
%A _Robert Price_, Dec 25 2015