login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266245
Decimal representation of the n-th iteration of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell.
2
1, 0, 5, 96, 29, 1952, 29, 32672, 29, 524192, 29, 8388512, 29, 134217632, 29, 2147483552, 29, 34359738272, 29, 549755813792, 29, 8796093022112, 29, 140737488355232, 29, 2251799813685152, 29, 36028797018963872, 29, 576460752303423392, 29, 9223372036854775712
OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
From Colin Barker, Dec 28 2015 and Apr 14 2019: (Start)
a(n) = 17*a(n-2)-16*a(n-4) for n>7.
G.f.: (1-12*x^2+96*x^3-40*x^4+320*x^5-384*x^6+1024*x^7) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = 4^n/2 + 90*floor(4^n/60) - 90 for odd n>3; a(n) = 29 for even n>3. - Karl V. Keller, Jr., Aug 17 2021
MATHEMATICA
rule=9; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
PROG
(Python) print([1, 0, 5, 96]+[4**n//2 + 90*(4**n//60) - 90 if n%2 else 29 for n in range(4, 50)]) # Karl V. Keller, Jr., Aug 17 2021
CROSSREFS
Sequence in context: A218463 A192343 A152839 * A194616 A285367 A208253
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 25 2015
STATUS
approved