Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 13 2019 22:10:35
%S 0,1,5,0,9,0,13,0,17,0,21,0,25,0,29,0,33,0,37,0,41,0,45,0,49,0,53,0,
%T 57,0,61,0,65,0,69,0,73,0,77,0,81,0,85,0,89,0,93,0,97,0,101,0,105,0,
%U 109,0,113,0,117,0,121,0,125,0,129,0,133,0,137,0,141,0
%N Number of OFF (white) cells in the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266222/b266222.txt">Table of n, a(n) for n = 0..499</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Dec 26 2015 and Apr 13 2019: (Start)
%F a(n) = 1/2*(1+(-1)^n)*(1+2*n) for n>1.
%F a(n) = 2*a(n-2) - a(n-4) for n>5.
%F G.f.: x*(1+5*x-2*x^2-x^3+x^4) / ((1-x)^2*(1+x)^2).
%F (End)
%t rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}] (* Number of White cells in stage n *)
%Y Cf. A266216.
%K nonn,easy
%O 0,3
%A _Robert Price_, Dec 24 2015