login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266149
Number of n-digit primes that consist of at least n-1 copies of some decimal digit.
9
4, 21, 46, 43, 40, 53, 35, 49, 40, 38, 44, 52, 35, 45, 49, 42, 38, 57, 28, 45, 38, 47, 38, 52, 33, 45, 56, 38, 36, 65, 29, 56, 48, 40, 38, 58, 37, 33, 57, 40, 37, 61, 41, 39, 37, 44, 36, 55, 47, 43, 47, 43, 35, 62, 43, 46, 29, 35, 37, 56, 39, 41, 46, 48, 39, 74, 45, 34, 34, 35, 34, 67, 39, 45, 43
OFFSET
1,1
COMMENTS
The first n at which a(n)=k for k=1...80, or 0 if no such k exists with n < 701: 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 433, 141, 181, 847, 19, 31, 253, 357, 137, 25, 68, 7, 29, 37, 10, 44, 5, 43, 16, 4, 11, 14, 3, 22, 33, 8, 139, 82, 12, 6, 102, 48, 27, 18, 36, 270, 198, 42, 54, 498, 90, 30, 738, 72, 222, 192, 852, 84, 342, 0, 66, 0, 816, 264, 0, 288, 0.
LINKS
Michael De Vlieger and Robert G. Wilson v, Table of n, a(n) for n = 1..1215
FORMULA
a(n) = A265733(n) + A266141(n) + A266142(n) + A266143(n) + A266144(n) + A266145(n) + A266146(n) + A266147(n) + A266148(n) for n>2.
EXAMPLE
a(1) = 4 since 2, 3, 5 and 7 are primes,
a(2) = 21 since 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97 are primes,
a(3) = 46 since 101, 113, 131, 151, 181, 191, 199, 211, 223, 227, 229, 233, 277, 311, 313, 331, 337, 353, 373, 383, 433, 443, 449, 499, 557, 577, 599, 661, 677, 727, 733, 757, 773, 787, 797, 811, 877, 881, 883, 887, 911, 919, 929, 977, 991, 997 are all primes,
a(4) = 43 since 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 2333, 2777, 2999, 3313, 3323, 3331, 3343, 3373, 3433, 3533, 3733, 3833, 4111, 4441, 4447, 4999, 5333, 5557, 6661, 7177, 7333, 7477, 7577, 7717, 7727, 7757, 7877, 8111, 8887, 8999, 9199, 9929 and 9949 are primes; etc.
MATHEMATICA
Length /@ Array[Function[n, Select[Union[Flatten[Function[k, Select[FromDigits /@ Flatten[Permutations[Flatten@ {Table[k, {n - 1}], #}] & /@ Range[0, 9], 1], PrimeQ]] /@ Range[1, 9]]], Function[m, IntegerLength@ m == n]]], 100] (* Michael De Vlieger, Jan 01 2016 *)
PROG
(Python)
from sympy import isprime
def a(n):
if n == 1: return 4
okset = set()
for digit1 in "24568":
for digit2 in "1379":
t = int(digit1*(n-1) + digit2)
if isprime(t): okset.add(t)
for digit1 in "1379":
for digit2 in "0123456789":
if ((n-1)*int(digit1) + int(digit2))%3 == 0: continue
for j in range(n):
mc = digit1*j + digit2 + digit1*(n-1-j)
if mc[0] == '0': continue
t = int(mc)
if isprime(t): okset.add(t)
return len(okset)
print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Apr 21 2021
KEYWORD
base,nonn
AUTHOR
STATUS
approved