OFFSET
1,1
COMMENTS
The first n at which a(n)=k for k=1...80, or 0 if no such k exists with n < 701: 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 433, 141, 181, 847, 19, 31, 253, 357, 137, 25, 68, 7, 29, 37, 10, 44, 5, 43, 16, 4, 11, 14, 3, 22, 33, 8, 139, 82, 12, 6, 102, 48, 27, 18, 36, 270, 198, 42, 54, 498, 90, 30, 738, 72, 222, 192, 852, 84, 342, 0, 66, 0, 816, 264, 0, 288, 0.
LINKS
Michael De Vlieger and Robert G. Wilson v, Table of n, a(n) for n = 1..1215
FORMULA
EXAMPLE
a(1) = 4 since 2, 3, 5 and 7 are primes,
a(2) = 21 since 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97 are primes,
a(3) = 46 since 101, 113, 131, 151, 181, 191, 199, 211, 223, 227, 229, 233, 277, 311, 313, 331, 337, 353, 373, 383, 433, 443, 449, 499, 557, 577, 599, 661, 677, 727, 733, 757, 773, 787, 797, 811, 877, 881, 883, 887, 911, 919, 929, 977, 991, 997 are all primes,
a(4) = 43 since 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 2333, 2777, 2999, 3313, 3323, 3331, 3343, 3373, 3433, 3533, 3733, 3833, 4111, 4441, 4447, 4999, 5333, 5557, 6661, 7177, 7333, 7477, 7577, 7717, 7727, 7757, 7877, 8111, 8887, 8999, 9199, 9929 and 9949 are primes; etc.
MATHEMATICA
Length /@ Array[Function[n, Select[Union[Flatten[Function[k, Select[FromDigits /@ Flatten[Permutations[Flatten@ {Table[k, {n - 1}], #}] & /@ Range[0, 9], 1], PrimeQ]] /@ Range[1, 9]]], Function[m, IntegerLength@ m == n]]], 100] (* Michael De Vlieger, Jan 01 2016 *)
PROG
(Python)
from sympy import isprime
def a(n):
if n == 1: return 4
okset = set()
for digit1 in "24568":
for digit2 in "1379":
t = int(digit1*(n-1) + digit2)
if isprime(t): okset.add(t)
for digit1 in "1379":
for digit2 in "0123456789":
if ((n-1)*int(digit1) + int(digit2))%3 == 0: continue
for j in range(n):
mc = digit1*j + digit2 + digit1*(n-1-j)
if mc[0] == '0': continue
t = int(mc)
if isprime(t): okset.add(t)
return len(okset)
print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Apr 21 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Michael De Vlieger and Robert G. Wilson v, Dec 21 2015
STATUS
approved