login
A266112
Characteristic function for A266114 (numbers that are least siblings in A263267-tree).
4
1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1
OFFSET
1
COMMENTS
a(n) = 1 if there doesn't exist any k < n such that k - tau(k) = n - tau(n), and 0 otherwise. Here tau(n) = A000005(n), the number of divisors of n.
Also the characteristic function for the range of A082284 (with zero excluded).
LINKS
PROG
(Scheme)
(define (A266112 n) (let ((parent (- n (A000005 n)))) (let loop ((k (- n 1))) (cond ((<= k parent) 1) ((= (- k (A000005 k)) parent) 0) (else (loop (- k 1)))))))
CROSSREFS
Cf. A266113 (partial sums).
Sequence in context: A267179 A244527 A243566 * A331990 A301849 A074332
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2015
STATUS
approved