Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 10 2021 06:15:56
%S 1,10,100,1001,10010,100101,1001010,10010101,100101010,1001010101,
%T 10010101010,100101010101,1001010101010,10010101010101,
%U 100101010101010,1001010101010101,10010101010101010,100101010101010101,1001010101010101010,10010101010101010101
%N Binary representation of the middle column of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266071/b266071.txt">Table of n, a(n) for n = 0..999</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,1,-10).
%F G.f.: (1 - x^2 + x^3)/(1 - 10*x - x^2 + 10*x^3). - _Michael De Vlieger_, Dec 21 2015
%F a(n) = floor(991*10^n/990). - _Karl V. Keller, Jr._, Oct 09 2021
%e From _Michael De Vlieger_, Dec 21 2015: (Start)
%e First 8 rows at left with the center column values in parentheses, and at right the binary value of center column cells up to that row:
%e (1) -> 1
%e 1 (0) 0 -> 10
%e 0 0 (0) 1 0 -> 100
%e 1 1 1 (1) 0 0 1 -> 1001
%e 0 0 0 0 (0) 0 1 0 0 -> 10010
%e 1 1 1 1 1 (1) 1 0 0 1 1 -> 100101
%e 0 0 0 0 0 0 (0) 0 0 1 0 0 0 -> 1001010
%e 1 1 1 1 1 1 1 (1) 1 1 0 0 1 1 1 -> 10010101
%e (End)
%t Table[SeriesCoefficient[(1 - x^2 + x^3)/(1 - 10 x - x^2 + 10 x^3), {x, 0, n}], {n, 0, 19}] (* _Michael De Vlieger_, Dec 21 2015 *)
%o (Python) print([991*10**n//990 for n in range(50)]) # _Karl V. Keller, Jr._, Oct 09 2021
%Y Cf. A266070, A081253 (decimal).
%K nonn,easy
%O 0,2
%A _Robert Price_, Dec 20 2015