login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266071
Binary representation of the middle column of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
5
1, 10, 100, 1001, 10010, 100101, 1001010, 10010101, 100101010, 1001010101, 10010101010, 100101010101, 1001010101010, 10010101010101, 100101010101010, 1001010101010101, 10010101010101010, 100101010101010101, 1001010101010101010, 10010101010101010101
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
G.f.: (1 - x^2 + x^3)/(1 - 10*x - x^2 + 10*x^3). - Michael De Vlieger, Dec 21 2015
a(n) = floor(991*10^n/990). - Karl V. Keller, Jr., Oct 09 2021
EXAMPLE
From Michael De Vlieger, Dec 21 2015: (Start)
First 8 rows at left with the center column values in parentheses, and at right the binary value of center column cells up to that row:
(1) -> 1
1 (0) 0 -> 10
0 0 (0) 1 0 -> 100
1 1 1 (1) 0 0 1 -> 1001
0 0 0 0 (0) 0 1 0 0 -> 10010
1 1 1 1 1 (1) 1 0 0 1 1 -> 100101
0 0 0 0 0 0 (0) 0 0 1 0 0 0 -> 1001010
1 1 1 1 1 1 1 (1) 1 1 0 0 1 1 1 -> 10010101
(End)
MATHEMATICA
Table[SeriesCoefficient[(1 - x^2 + x^3)/(1 - 10 x - x^2 + 10 x^3), {x, 0, n}], {n, 0, 19}] (* Michael De Vlieger, Dec 21 2015 *)
PROG
(Python) print([991*10**n//990 for n in range(50)]) # Karl V. Keller, Jr., Oct 09 2021
CROSSREFS
Cf. A266070, A081253 (decimal).
Sequence in context: A281730 A282954 A282984 * A118256 A351386 A102397
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 20 2015
STATUS
approved