login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265941
G.f. A(x) satisfies: A(x) = A(A(x)^2) / (x - x^2).
1
1, -1, 1, -3, 5, -11, 27, -69, 187, -517, 1461, -4163, 11947, -34521, 100261, -292835, 859927, -2538141, 7527545, -22422647, 67055871, -201247141, 605915529, -1829583727, 5539081021, -16810214491, 51130177087, -155839985097, 475899781565, -1455898774263, 4461443964939, -13693120761789, 42089169290257, -129551061180907, 399281615409427
OFFSET
1,4
COMMENTS
Equals the series reversion of the g.f. of A265940.
FORMULA
Let B(x) be the series reversion of A(x) so that A(B(x)) = x, then
(1) A(x^2) = x*B(x) - x*B(x)^2.
(2) B( x*B(x) - x*B(x)^2 ) = x^2.
(3) B(x) = (1 - sqrt(1 - 4*A(x^2)/x)) / 2.
(4) B(x) = C( A(x^2)/x ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers A000108.
EXAMPLE
G.f.: A(x) = x - x^2 + x^3 - 3*x^4 + 5*x^5 - 11*x^6 + 27*x^7 - 69*x^8 + 187*x^9 - 517*x^10 + 1461*x^11 - 4163*x^12 + 11947*x^13 + ...
such that A(A(x)^2) = (x-x^2)*A(x) where
A(A(x)^2) = x^2 - 2*x^3 + 2*x^4 - 4*x^5 + 8*x^6 - 16*x^7 + 38*x^8 - 96*x^9 + 256*x^10 - 704*x^11 + 1978*x^12 - 5624*x^13 + 16110*x^14 + ...
Let B(x) be the series reversion of A(x) so that A(B(x)) = x then
B(x) = x + x^2 + x^3 + 3*x^4 + 9*x^5 + 25*x^6 + 71*x^7 + 219*x^8 + 689*x^9 + 2189*x^10 + 7059*x^11 + 23091*x^12 + ... + A265940(n)*x^n + ...
such that B( x*B(x) - x*B(x)^2 ) = x^2.
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n), A = serreverse( (1 - sqrt(1 - 4*subst(A +x*O(x^n), x, x^2)/x) )/2 ) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A265940.
Sequence in context: A204857 A292855 A374572 * A372099 A333629 A308545
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 29 2015
STATUS
approved