login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265693
Squarefree composites that are not sqrt(n)-smooth: some prime factor of n is > sqrt(n).
1
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 174
OFFSET
1,1
COMMENTS
Intersection of A064052 and A120944. - Michel Marcus, Dec 15 2015
LINKS
EXAMPLE
a(13) = 42 = 2*3*7. It is squarefree, composite and 7 > sqrt(42) = 6.4807...
MAPLE
filter:= proc(n)
if isprime(n) or not numtheory:-issqrfree(n) then return false fi;
max(numtheory:-factorset(n))^2 > n
end proc:
select(filter, [$2..1000]); # Robert Israel, Nov 04 2019
MATHEMATICA
JaggedQ[n_] := If[Last[FactorInteger[n]][[1]]>Sqrt[n], True, False]; Select[Range[200], JaggedQ[#]&&SquareFreeQ[#]&&!PrimeQ[#] &]
PROG
(PARI) lista(nn) = {forcomposite(n=1, nn, if (issquarefree(n), my(f = factor(n)); if (f[#f~, 1]^2 > n, print1(n, ", "))); ); } \\ Michel Marcus, Dec 15 2015
CROSSREFS
Includes A006881.
Sequence in context: A238748 A367590 A268390 * A211484 A339561 A350486
KEYWORD
nonn
AUTHOR
Frank M Jackson, Dec 13 2015
STATUS
approved