login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A265354
Permutation of nonnegative integers: a(n) = A263273(A264985(n)).
11
0, 1, 3, 2, 4, 9, 6, 10, 12, 7, 5, 19, 8, 13, 27, 18, 28, 36, 21, 11, 57, 24, 37, 30, 15, 31, 39, 22, 16, 64, 23, 14, 55, 20, 46, 58, 25, 17, 73, 26, 40, 81, 54, 82, 108, 63, 29, 171, 72, 109, 90, 45, 85, 117, 66, 34, 192, 69, 38, 165, 60, 100, 174, 75, 35, 219, 78, 118, 84, 33, 91, 93, 48, 32, 138, 51, 112, 111, 42, 94, 120, 67
OFFSET
0,3
COMMENTS
Composition of A263273 with the permutation obtained from its odd bisection.
FORMULA
a(n) = A263273(A264985(n)).
PROG
(Scheme) (define (A265354 n) (A263273 (A264985 n)))
(Python)
from sympy import factorint
from sympy.ntheory.factor_ import digits
from operator import mul
def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
def a038502(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
def a038500(n): return n/a038502(n)
def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
def a264985(n): return (a263273(2*n + 1) - 1)/2
def a(n): return a263273(a264985(n)) # Indranil Ghosh, May 22 2017
CROSSREFS
Inverse: A265353.
Cf. also A265352, A265355, A265356.
Sequence in context: A360415 A264985 A265355 * A265356 A083164 A094962
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 07 2015
STATUS
approved