login
A265027
First differences of A048701 divided by 6.
3
1, 1, 3, 2, 1, 2, 11, 4, 2, 4, 1, 4, 2, 4, 43, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 171, 16, 8, 16, 4, 16, 8, 16, 2, 16, 8, 16, 4, 16, 8, 16, 1, 16, 8, 16, 4, 16, 8, 16, 2, 16, 8, 16, 4, 16, 8, 16, 683, 32, 16, 32, 8, 32, 16, 32, 4, 32, 16, 32, 8, 32, 16, 32, 2, 32, 16, 32, 8, 32, 16, 32, 4, 32, 16, 32, 8
OFFSET
2,3
COMMENTS
Indices n such that a(n) = 1 are equal to row sums of Lucas triangle. In other words, a(A042950(n)) = 1. Additionally, a(A070875(n)) = 2 and a(A123760(n)) = 4. - Altug Alkan, Dec 04 2015
LINKS
FORMULA
a(n) = A265026(n) / 6, for n > 1. - Altug Alkan, Dec 03 2015
MATHEMATICA
Differences@ Select[Range@ 12000, Reverse@ # == # && EvenQ@ Length@ # &@ IntegerDigits[#, 2] &]/6 (* Michael De Vlieger, Dec 04 2015 *)
PROG
(PARI) a048701(n) = my(f); f = length(binary(n)) - 1; 2^(f+1)*n + sum(i=0, f, bittest(n, i) * 2^(f-i));
vector(100, n, (a048701(n+1) - a048701(n)) / 6) \\ Altug Alkan, Dec 03 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 30 2015
STATUS
approved