|
|
A264970
|
|
If A262686(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A262686(n)), where A262686(n) = largest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).
|
|
4
|
|
|
12, 2, 11, 2, 1, 1, 10, 0, 0, 3, 2, 2, 9, 0, 1, 5, 1, 4, 8, 0, 0, 3, 7, 2, 0, 0, 2, 1, 0, 1, 6, 6, 1, 0, 5, 5, 0, 0, 6, 4, 0, 1, 4, 0, 1, 3, 3, 2, 5, 0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 4, 4, 3, 3, 0, 0, 2, 0, 0, 0, 1, 2, 3, 3, 2, 0, 0, 2, 1, 4, 0, 1, 1, 3, 3, 2, 0, 2, 2, 0, 4, 3, 1, 1, 3, 2, 5, 1, 4, 0, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n) = number of iterations of A262686 needed before zero is reached. In the context of tree (A263267) defined by edge-relation A049820(child) = parent, this is the number of hops we make before reaching one of the leaves (A045765), when we start from n and always select the largest child at each iteration.
|
|
LINKS
|
|
|
FORMULA
|
Other identities. For all n >= 0:
|
|
PROG
|
(Scheme, with memoization-macro definec)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|