login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264814 Numbers k such that concatenate(k,k+1,k) is prime. 1
7, 9, 11, 13, 33, 37, 39, 41, 47, 57, 59, 61, 69, 71, 77, 79, 81, 83, 101, 103, 129, 149, 181, 187, 189, 191, 193, 207, 217, 229, 231, 241, 289, 291, 299, 301, 303, 307, 317, 333, 347, 359, 373, 377, 383, 387, 409, 439, 451, 467, 473, 487, 489, 509, 517, 527 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Motivated by sequence A068660 which lists these primes.

LINKS

Michael S. Branicky, Table of n, a(n) for n = 1..10000

EXAMPLE

11 is in the sequence because 111211 is prime.

13 is in the sequence because 131413 is prime.

15 is not in the sequence because 151615 = 5 * 30323.

MATHEMATICA

Select[Range[800], PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[# + 1], IntegerDigits[#]]]] &] (* Alonso del Arte, Nov 25 2015 *)

PROG

(PARI) is(n)=isprime(eval(Str(n, n+1, n)))

(MAGMA) [n: n in [1..700] | IsPrime(Seqint(Intseq(n) cat Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Nov 30 2015

(Python)

from sympy import isprime

def aupto(N):

  return [k for k in range(1, N+1, 2) if isprime(int(str(k)+str(k+1)+str(k)))]

print(aupto(530)) # Michael S. Branicky, Jul 09 2021

CROSSREFS

Cf. A068659, A068660, A262205.

Sequence in context: A055741 A103621 A081239 * A029612 A120165 A267970

Adjacent sequences:  A264811 A264812 A264813 * A264815 A264816 A264817

KEYWORD

nonn,base

AUTHOR

M. F. Hasler, Nov 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:28 EST 2021. Contains 349419 sequences. (Running on oeis4.)