Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 18 2015 23:21:26
%S 1,1,3,11,46,234,1269,7609,48501,328831,2347655,17551462,136902440,
%T 1109043889,9308756773,80704240807,721319484280,6632169860334,
%U 62631220229804,606525577239266,6015393685594488,61024457251302195,632560831051022660,6693134988051996106,72226722923184020925,794238562047133369308
%N G.f.: Sum_{n>=0} x^n * (d/dx)^(n^2) x^(n^2) * (1+x)^n / (n^2)!, where (d/dx)^k denotes the k-th derivative operator.
%C Compare to the trivial: Sum_{n>=0} x^n * (d/dx)^(n^2) x^(n^2) / (n^2)! = 1/(1-x).
%H Vaclav Kotesovec, <a href="/A264416/b264416.txt">Table of n, a(n) for n = 0..165</a>
%F a(n) = Sum_{k=0..[n/2]} binomial(n-k, k) * binomial((n-k)^2 + k, k).
%e G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 234*x^5 + 1269*x^6 + 7609*x^7 + 48501*x^8 + 328831*x^9 + 2347655*x^10 +...
%e where
%e A(x) = 1 + x * d/dx x*(1+x) + x^2 * d^4/dx^4 x^4*(1+x)^2/4! + x^3 * d^9/dx^9 x^9*(1+x)^3/9! + x^4 * d^16/dx^16 x^16*(1+x)^4/16! + x^5 * d^25/dx^25 x^25*(1+x)^5/25! + x^6 * d^36/dx^36 x^36*(1+x)^6/36! +...
%o (PARI) {Dx(n,F)=my(G=F);for(i=1,n,G=deriv(G));G}
%o {a(n) = my(A); A = sum(m=0,n, x^m * Dx(m^2, x^(m^2)*(1+x +x*O(x^n))^m)/(m^2)! ); polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) {a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial((n-k)^2+k, k))}
%o for(n=0,30,print1(a(n),", "))
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 17 2015