login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264416
G.f.: Sum_{n>=0} x^n * (d/dx)^(n^2) x^(n^2) * (1+x)^n / (n^2)!, where (d/dx)^k denotes the k-th derivative operator.
1
1, 1, 3, 11, 46, 234, 1269, 7609, 48501, 328831, 2347655, 17551462, 136902440, 1109043889, 9308756773, 80704240807, 721319484280, 6632169860334, 62631220229804, 606525577239266, 6015393685594488, 61024457251302195, 632560831051022660, 6693134988051996106, 72226722923184020925, 794238562047133369308
OFFSET
0,3
COMMENTS
Compare to the trivial: Sum_{n>=0} x^n * (d/dx)^(n^2) x^(n^2) / (n^2)! = 1/(1-x).
LINKS
FORMULA
a(n) = Sum_{k=0..[n/2]} binomial(n-k, k) * binomial((n-k)^2 + k, k).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 234*x^5 + 1269*x^6 + 7609*x^7 + 48501*x^8 + 328831*x^9 + 2347655*x^10 +...
where
A(x) = 1 + x * d/dx x*(1+x) + x^2 * d^4/dx^4 x^4*(1+x)^2/4! + x^3 * d^9/dx^9 x^9*(1+x)^3/9! + x^4 * d^16/dx^16 x^16*(1+x)^4/16! + x^5 * d^25/dx^25 x^25*(1+x)^5/25! + x^6 * d^36/dx^36 x^36*(1+x)^6/36! +...
PROG
(PARI) {Dx(n, F)=my(G=F); for(i=1, n, G=deriv(G)); G}
{a(n) = my(A); A = sum(m=0, n, x^m * Dx(m^2, x^(m^2)*(1+x +x*O(x^n))^m)/(m^2)! ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial((n-k)^2+k, k))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A129579 A030814 A030976 * A290712 A248208 A112567
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2015
STATUS
approved