Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Oct 28 2015 11:50:30
%S 2,2,2,3,2,3,3,3,3,3,4,3,7,3,4,4,4,7,7,4,4,5,4,14,7,14,4,5,5,5,14,16,
%T 16,14,5,5,6,5,25,17,61,17,25,5,6,6,6,25,41,93,93,41,25,6,6,7,6,41,48,
%U 494,379,494,48,41,6,7,7,7,41,113,975,2909,2909,975,113,41,7,7,8,7,63,141
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
%C Table starts
%C .2.2..3...3.....4......4........5.........5.........6..........6.........7
%C .2.2..3...3.....4......4........5.........5.........6..........6.........7
%C .3.3..7...7....14.....14.......25........25........41.........41........63
%C .3.3..7...7....16.....17.......41........48.......113........141.......303
%C .4.4.14..16....61.....93......494.......975......4917......10340.....41366
%C .4.4.14..17....93....379.....2909.....20374....121878.....785046...3811314
%C .5.5.25..41...494...2909....62904....525967...8468941...71260394.850301770
%C .5.5.25..48...975..20374...525967..16701495.329866231.8672875293
%C .6.6.41.113..4917.121878..8468941.329866231
%C .6.6.41.141.10340.785046.71260394
%H R. H. Hardin, <a href="/A263873/b263873.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +a(n-2) -a(n-3)
%F k=2: a(n) = a(n-1) +a(n-2) -a(n-3)
%F k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7)
%F k=4: [order 14]
%F k=5: [order 37]
%F k=6: [order 79]
%e Some solutions for n=4 k=4
%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1
%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1
%e ..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1
%e ..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1
%Y Columns 1 and 2 are A004526(n+3).
%Y Column 3 is A263794(n+1).
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Oct 28 2015