login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263873
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
6
2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 7, 3, 4, 4, 4, 7, 7, 4, 4, 5, 4, 14, 7, 14, 4, 5, 5, 5, 14, 16, 16, 14, 5, 5, 6, 5, 25, 17, 61, 17, 25, 5, 6, 6, 6, 25, 41, 93, 93, 41, 25, 6, 6, 7, 6, 41, 48, 494, 379, 494, 48, 41, 6, 7, 7, 7, 41, 113, 975, 2909, 2909, 975, 113, 41, 7, 7, 8, 7, 63, 141
OFFSET
1,1
COMMENTS
Table starts
.2.2..3...3.....4......4........5.........5.........6..........6.........7
.2.2..3...3.....4......4........5.........5.........6..........6.........7
.3.3..7...7....14.....14.......25........25........41.........41........63
.3.3..7...7....16.....17.......41........48.......113........141.......303
.4.4.14..16....61.....93......494.......975......4917......10340.....41366
.4.4.14..17....93....379.....2909.....20374....121878.....785046...3811314
.5.5.25..41...494...2909....62904....525967...8468941...71260394.850301770
.5.5.25..48...975..20374...525967..16701495.329866231.8672875293
.6.6.41.113..4917.121878..8468941.329866231
.6.6.41.141.10340.785046.71260394
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) -a(n-3)
k=2: a(n) = a(n-1) +a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7)
k=4: [order 14]
k=5: [order 37]
k=6: [order 79]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1
CROSSREFS
Columns 1 and 2 are A004526(n+3).
Column 3 is A263794(n+1).
Sequence in context: A335925 A104307 A264029 * A263799 A299230 A182576
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 28 2015
STATUS
approved