OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^2)^2 * phi(-x^6)^2 / phi(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-1/6) * eta(q^2)^3 * eta(q^6)^4 / (eta(q)^2 * eta(q^12)^2) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 15552^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263444.
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 4*x^7 + 7*x^8 + ...
G.f. = q + 2*q^7 + 2*q^13 + 4*q^19 + 5*q^25 + 6*q^31 + 6*q^37 + 4*q^43 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 4, 0, x], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A)^4 / (eta(x + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 18 2015
STATUS
approved