OFFSET
1,6
COMMENTS
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A327366. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 10 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..210 (first 20 rows)
FindStat - Combinatorial Statistic Finder, The degree of a graph
Eric Weisstein's World of Mathematics, Maximum Vertex Degree
FORMULA
From Geoffrey Critzer, Sep 10 2016: (Start)
G.f. for column k=0: A(x)=1/(1-x).
G.f. for column k=1: B(x)=x^2/((1-x^2)(1-x)).
G.f. for column k=2: 1/((1-x)(1-x^2))*Product_{i>=3} 1/(1-x^i)^2 - B(x) - A(x).
(End)
T(n, 0) = 1.
T(n, n - 1) = A000088(n - 1).
T(n, k) = A294217(n, n - 1 - k). - Andrew Howroyd, Sep 03 2019
EXAMPLE
Triangle begins:
1,
1, 1,
1, 1, 2,
1, 2, 4, 4,
1, 2, 8, 12, 11,
1, 3, 15, 43, 60, 34,
1, 3, 25, 121, 360, 378, 156,
1, 4, 41, 378, 2166, 4869, 3843, 1044,
...
CROSSREFS
KEYWORD
AUTHOR
Christian Stump, Oct 13 2015
EXTENSIONS
Rows n=9 and 10 added by Eric W. Weisstein, Oct 24 2017
STATUS
approved