login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of graphs with n vertices and maximum vertex degree k, (0 <= k < n).
8

%I #58 Mar 10 2020 19:29:06

%S 1,1,1,1,1,2,1,2,4,4,1,2,8,12,11,1,3,15,43,60,34,1,3,25,121,360,378,

%T 156,1,4,41,378,2166,4869,3843,1044,1,4,65,1095,14306,68774,113622,

%U 64455,12346,1,5,100,3441,104829,1141597,3953162,4605833,1921532,274668

%N Triangle read by rows: T(n,k) is the number of graphs with n vertices and maximum vertex degree k, (0 <= k < n).

%C Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A327366. Burnside's lemma can be used to extend this method to the unlabeled case. - _Andrew Howroyd_, Mar 10 2020

%H Andrew Howroyd, <a href="/A263293/b263293.txt">Table of n, a(n) for n = 1..210</a> (first 20 rows)

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000171">The degree of a graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumVertexDegree.html">Maximum Vertex Degree</a>

%F From _Geoffrey Critzer_, Sep 10 2016: (Start)

%F G.f. for column k=0: A(x)=1/(1-x).

%F G.f. for column k=1: B(x)=x^2/((1-x^2)(1-x)).

%F G.f. for column k=2: 1/((1-x)(1-x^2))*Product_{i>=3} 1/(1-x^i)^2 - B(x) - A(x).

%F (End)

%F T(n, 0) = 1.

%F T(n, n - 1) = A000088(n - 1).

%F T(n, k) = A294217(n, n - 1 - k). - _Andrew Howroyd_, Sep 03 2019

%e Triangle begins:

%e 1,

%e 1, 1,

%e 1, 1, 2,

%e 1, 2, 4, 4,

%e 1, 2, 8, 12, 11,

%e 1, 3, 15, 43, 60, 34,

%e 1, 3, 25, 121, 360, 378, 156,

%e 1, 4, 41, 378, 2166, 4869, 3843, 1044,

%e ...

%Y Row sums are A000088 (simple graphs on n nodes).

%Y Column k=2 is A324740.

%Y Diagonals include A000088(n-1), A324693, A324670.

%Y Cf. A294217 (triangle of n-node minimum vertex degree counts).

%Y Cf. A327366.

%K nonn,tabl,nice

%O 1,6

%A _Christian Stump_, Oct 13 2015

%E Rows n=9 and 10 added by _Eric W. Weisstein_, Oct 24 2017