login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263182 Smallest k such that k//A002275(n)//k is prime, where // denotes concatenation and A002275(n) is the n-th repunit (R_n). 2

%I #27 Nov 07 2019 09:03:34

%S 1,3,13,17,1073,19,17,29,10000117,73,17,3,1007,3,43,11,

%T 1000000000000029,1,31,11,1191,1,1143,31,10000079,21,91,59,1019,3,67,

%U 117,10000000000000000000000000000077,109,89,49,1097,41,1053,43,10000047,87,23,53,1149,83,57

%N Smallest k such that k//A002275(n)//k is prime, where // denotes concatenation and A002275(n) is the n-th repunit (R_n).

%C a(n) = 3 if n is in A056251.

%C From _Chai Wah Wu_, Nov 05 2019 : (Start)

%C Theorem: a(2^r*s) >= 10^(2^r-1) for all r >= 0, s > 0.

%C Proof: Note that if k has m digits, then k//A002275(n)//k = k*(10^(n+m)+1) + A002275(n)*10^m which is a multiple of gcd(A002275(n),10^(n+m)+1).

%C Next, since 10^(2^r) - 1 = (10^(2^(r-1) -1))*(10^(2^(r-1) + 1)) and 9 does not divide 10^n+1, by induction it is easy to see that 10^(2^w) + 1 is a divisor of A002275(2^r) for 1 <= w < r. Since A002275(2^r) is a divisor of A002275(2^r*s), 10^(2^w) + 1 is also a divisor of A002275(2^r*s).

%C For 1 <= m < 2^r, let t be the 2-adic valuation of m, i.e. 0 <= t = A007814(m) < r.

%C Then 10^(2^r*s+m)+1 = 10^(2^t*q)+1 = (10^(2^t))^q + 1 for some odd number q.

%C Since the sum of two odd powers a^q+b^q is divisible by a+b, this implies that 10^(2^r*s+m)+1 is divisible by 10^(2^t)+1.

%C This means that for n = 2^r*s and 1 <= m < 2^r, gcd(A002275(n),10^(n+m)+1) >= 10^(2^t)+1 > 1, i.e. k//A002275(n)//k is not prime.

%C Thus a(2^r*s) must have at least 2^r digits, i.e. a(2^r*s) >= 10^(2^r-1). QED

%C As a consequence, a(n) >= 10^(A006519(n)-1). This result is still true if some of the digits of k are leading zeros.

%C (End)

%H Chai Wah Wu, <a href="/A263182/b263182.txt">Table of n, a(n) for n = 0..1023</a>

%F a(A004023(n)-2) = 1. - _Chai Wah Wu_, Nov 04 2019

%e R_0 = 0 and the smallest k such that k//0//k is prime is 1, so a(0) = 1.

%t Table[k = 1; While[! PrimeQ[f[n, k]], k++]; k, {n, 0, 7}] (* _Michael De Vlieger_, Oct 13 2015 *)

%o (PARI) a(n) = my(rep=(10^n-1)/9, k=1); while(!ispseudoprime(eval(Str(k, rep, k))), k++); k

%Y Cf. A002275, A004023, A006519, A056251.

%K nonn,base

%O 0,2

%A _Felix Fröhlich_, Oct 11 2015

%E a(16)-a(46) from _Chai Wah Wu_, Nov 04 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 15:59 EDT 2024. Contains 375310 sequences. (Running on oeis4.)