login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263181
Decimal expansion of a constant related to A263144.
5
1, 8, 6, 3, 8, 2, 6, 9, 0, 6, 2, 4, 7, 5, 2, 6, 3, 0, 3, 9, 1, 3, 6, 8, 3, 6, 4, 6, 2, 9, 9, 1, 8, 4, 8, 3, 3, 8, 4, 4, 2, 4, 0, 8, 6, 3, 4, 1, 7, 6, 4, 4, 0, 9, 1, 4, 6, 9, 2, 3, 6, 8, 6, 0, 4, 1, 9, 8, 8, 7, 2, 9, 6, 2, 8, 8, 0, 7, 2, 5, 4, 4, 2, 9, 1, 6, 5, 2, 2, 8, 7, 3, 4, 4, 0, 1, 9, 4, 3, 6, 4, 9, 4, 4, 1, 8
OFFSET
0,2
FORMULA
Integral_{x=0..infinity} exp(-x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 4/(25*x^2) - 71/(300*x*exp(x)) dx.
A263178 + A263179 + A263180 + A263181 = (log(Gamma(1/5)^3 / ((1+sqrt(5)) * Pi * Gamma(3/5) * 5^(29/12))) - 4*Zeta'(-1))/5 = -0.2745843324986204888923185745... . - Vaclav Kotesovec, Oct 12 2015
EXAMPLE
0.1863826906247526303913683646299184833844240863417644091469236860419...
MATHEMATICA
NIntegrate[E^(-x)/(1-E^(-5*x))^2/x - 1/(25*x^3) - 4/(25*x^2) - 71*E^(-x)/(300*x), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Oct 11 2015
STATUS
approved