login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263100
Number of ordered pairs (k, m) with k > 0 and m > 0 such that n = pi(k^2) + pi(m^2/2), where pi(x) denotes the number of primes not exceeding x.
2
1, 2, 1, 3, 2, 3, 3, 2, 4, 2, 6, 2, 5, 2, 5, 4, 4, 4, 4, 5, 3, 5, 5, 4, 4, 6, 6, 1, 7, 4, 6, 4, 4, 7, 6, 4, 5, 5, 5, 6, 6, 4, 6, 3, 7, 6, 5, 6, 6, 6, 5, 5, 6, 4, 7, 8, 4, 3, 10, 2, 6, 6, 6, 6, 7, 5, 5, 9, 3, 6, 8, 6, 7, 5, 5, 6, 7, 7, 8, 3, 9, 3, 10, 2, 7, 9, 7, 2, 7, 8, 5, 8, 4, 6, 9, 5, 7, 6, 5, 7
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 28.
(ii) Any integer n > 0 can be written as pi(k^2) + pi((m^2+1)/2) with k and m positive integers.
(iii) Each n = 1,2,3,... can be written as pi(k^2/2) + pi((m^2+1)/2) with k and m positive integers.
See also A262995, A262999, A263001 and A263020 for similar conjectures.
EXAMPLE
a(1) = 1 since 1 = 0 + 1 = pi(1^2) + pi(2^2/2).
a(3) = 1 since 3 = 2 + 1 = pi(2^2) + pi(2^2/2).
a(28) = 1 since 28 = 11 + 17 = pi(6^2) + pi(11^2/2).
MATHEMATICA
s[n_]:=s[n]=PrimePi[n^2]
t[n_]:=t[n]=PrimePi[n^2/2]
Do[r=0; Do[If[s[k]>n, Goto[bb]]; Do[If[t[j]>n-s[k], Goto[aa]]; If[t[j]==n-s[k], r=r+1]; Continue, {j, 1, n-s[k]+1}]; Label[aa]; Continue, {k, 1, n}];
Label[bb]; Print[n, " ", r]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 09 2015
STATUS
approved