login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of a constant related to A262876 and A262946 (negated).
8

%I #12 Jan 07 2021 07:29:42

%S 1,8,8,7,0,8,1,9,1,9,7,9,5,2,8,5,3,2,3,7,6,4,1,0,0,9,8,6,4,9,2,0,7,9,

%T 7,3,5,9,2,1,1,4,4,6,7,2,6,8,4,2,9,2,2,1,5,0,9,4,1,7,4,3,3,7,8,2,3,2,

%U 3,7,2,1,3,7,1,8,0,6,7,4,7,1,3,9,4,6,9,7,4,1,6,1,8,7,0,1,6,2,5,8,3,2,8,1,7,9

%N Decimal expansion of a constant related to A262876 and A262946 (negated).

%F Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) dx.

%F exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.

%e -0.18870819197952853237641009864920797359211446726842922150941743378232...

%t NIntegrate[1/x*(Exp[-2*x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 1/(9*x) + Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

%Y Cf. A262876, A262877, A262946, A262947, A263031, A075700, A084448, A263406, A263415.

%K nonn,cons

%O 0,2

%A _Vaclav Kotesovec_, Oct 08 2015