login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Union of all unique coefficients of all powers of the g.f. A(x) of this sequence, starting with A(0)=2 and A'(0)=3.
1

%I #5 Oct 05 2015 22:18:22

%S 2,3,4,8,12,16,25,32,36,56,64,96,102,112,128,200,240,256,267,344,356,

%T 384,512,576,598,636,656,936,1024,1040,1048,1128,1344,1368,1480,1952,

%U 2048,2248,2800,2865,2884,2928,3072,3200,3360,3640,4096,4905,5408,5460,5760,6912,6948,7088,7840,8192,8736,9688,10083,11088,11210,11616,13552,14208,15360,16384,16608,18056,18576,20224,21020,22800,24992,31123,31356,32768,33368,33792,34832,35872

%N Union of all unique coefficients of all powers of the g.f. A(x) of this sequence, starting with A(0)=2 and A'(0)=3.

%H Paul D. Hanna, <a href="/A262975/b262975.txt">Table of n, a(n) for n = 0..1024</a>

%e G.f.: A(x) = 2 + 3*x + 4*x^2 + 8*x^3 + 12*x^4 + 16*x^5 + 25*x^6 + 32*x^7 + 36*x^8 + 56*x^9 + 64*x^10 + 96*x^11 + 102*x^12 +...

%e The coefficients in A(x)^n begin:

%e [2, 3, 4, 8, 12, 16, 25, 32, 36, 56, 64, 96, 102, 112, 128, 200, ...];

%e [4, 12, 25, 56, 112, 200, 356, 598, 936, 1480, 2248, 3360, 4905, ...];

%e [8, 36, 102, 267, 636, 1368, 2800, 5460, 10083, 18056, 31356, ...];

%e [16, 96, 344, 1048, 2865, 7088, 16384, 35872, 74584, 148876, ...];

%e [32, 240, 1040, 3640, 11210, 31123, 79940, 193160, 442420, ...];

%e [64, 576, 2928, 11616, 39804, 122148, 344329, 907656, 2260656, ...];

%e [128, 1344, 7840, 34832, 131544, 441532, 1353198, 3858011, ...];

%e [256, 3072, 20224, 99584, 411232, 1497920, 4954608, 15175216, ...];

%e [512, 6912, 50688, 274176, 1229760, 4830624, 17142816, 56099376, ...];

%e [1024, 15360, 124160, 732160, 3546240, 14943872, 56621600, ...]; ...

%e where the sorted union of all unique coefficients forms this sequence.

%e ...

%e The coefficients of A(x)^n are located at the following positions:

%e n=2: [3,5,7,10,14,16,21,25,28,35,38,45,48,53,58,63,69,73,77,85,89,94,102,,...].

%e n=4: [4,9,13,19,26,34,39,50,59,68,75,87,100,112,124,135,149,162,176,189,204,...].

%e n=5: [6,12,20,31,40,54,66,80,95,114,130,152,170,190,209,236,254,275,298,322,...].

%e n=6: [8,17,30,46,61,74,98,120,145,169,196,223,251,285,314,341,377,409,446,476,...].

%e n=7: [11,24,42,62,84,106,138,166,200,238,269,308,349,384,430,470,520,570,625,...].

%e n=8: [18,43,70,104,143,184,234,282,332,385,448,509,576,653,732,808,890,974,...].

%e n=9: [23,52,86,129,177,230,288,345,411,475,554,637,726,815,909,1005,...].

%e n=10: [29,65,108,159,217,280,347,422,495,584,680,777,878,990,...].

%e ...

%e The powers of 2 are located at positions:

%e [1,3,4,6,8,11,15,18,23,29,37,47,56,66,76,91,110,128,150,172,197,224,253,287,321,359,395,437,482,535,591,652,718,783,863,936,1015,...].

%o (PARI) {a(n)=local(A=[2,3],G=A); for(i=1,sqrt(n+1), G=A; for(k=2,4*#binary(n), G=concat(G, Vec(Ser(A)^k)); G=vecsort(G,,8) ); A=Vec(Ser(G) +x*O(x^n)) );A[n]}

%o for(n=1,80,print1(a(n),", "))

%K nonn

%O 0,1

%A _Paul D. Hanna_, Oct 05 2015