login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262975
Union of all unique coefficients of all powers of the g.f. A(x) of this sequence, starting with A(0)=2 and A'(0)=3.
1
2, 3, 4, 8, 12, 16, 25, 32, 36, 56, 64, 96, 102, 112, 128, 200, 240, 256, 267, 344, 356, 384, 512, 576, 598, 636, 656, 936, 1024, 1040, 1048, 1128, 1344, 1368, 1480, 1952, 2048, 2248, 2800, 2865, 2884, 2928, 3072, 3200, 3360, 3640, 4096, 4905, 5408, 5460, 5760, 6912, 6948, 7088, 7840, 8192, 8736, 9688, 10083, 11088, 11210, 11616, 13552, 14208, 15360, 16384, 16608, 18056, 18576, 20224, 21020, 22800, 24992, 31123, 31356, 32768, 33368, 33792, 34832, 35872
OFFSET
0,1
LINKS
EXAMPLE
G.f.: A(x) = 2 + 3*x + 4*x^2 + 8*x^3 + 12*x^4 + 16*x^5 + 25*x^6 + 32*x^7 + 36*x^8 + 56*x^9 + 64*x^10 + 96*x^11 + 102*x^12 +...
The coefficients in A(x)^n begin:
[2, 3, 4, 8, 12, 16, 25, 32, 36, 56, 64, 96, 102, 112, 128, 200, ...];
[4, 12, 25, 56, 112, 200, 356, 598, 936, 1480, 2248, 3360, 4905, ...];
[8, 36, 102, 267, 636, 1368, 2800, 5460, 10083, 18056, 31356, ...];
[16, 96, 344, 1048, 2865, 7088, 16384, 35872, 74584, 148876, ...];
[32, 240, 1040, 3640, 11210, 31123, 79940, 193160, 442420, ...];
[64, 576, 2928, 11616, 39804, 122148, 344329, 907656, 2260656, ...];
[128, 1344, 7840, 34832, 131544, 441532, 1353198, 3858011, ...];
[256, 3072, 20224, 99584, 411232, 1497920, 4954608, 15175216, ...];
[512, 6912, 50688, 274176, 1229760, 4830624, 17142816, 56099376, ...];
[1024, 15360, 124160, 732160, 3546240, 14943872, 56621600, ...]; ...
where the sorted union of all unique coefficients forms this sequence.
...
The coefficients of A(x)^n are located at the following positions:
n=2: [3,5,7,10,14,16,21,25,28,35,38,45,48,53,58,63,69,73,77,85,89,94,102,,...].
n=4: [4,9,13,19,26,34,39,50,59,68,75,87,100,112,124,135,149,162,176,189,204,...].
n=5: [6,12,20,31,40,54,66,80,95,114,130,152,170,190,209,236,254,275,298,322,...].
n=6: [8,17,30,46,61,74,98,120,145,169,196,223,251,285,314,341,377,409,446,476,...].
n=7: [11,24,42,62,84,106,138,166,200,238,269,308,349,384,430,470,520,570,625,...].
n=8: [18,43,70,104,143,184,234,282,332,385,448,509,576,653,732,808,890,974,...].
n=9: [23,52,86,129,177,230,288,345,411,475,554,637,726,815,909,1005,...].
n=10: [29,65,108,159,217,280,347,422,495,584,680,777,878,990,...].
...
The powers of 2 are located at positions:
[1,3,4,6,8,11,15,18,23,29,37,47,56,66,76,91,110,128,150,172,197,224,253,287,321,359,395,437,482,535,591,652,718,783,863,936,1015,...].
PROG
(PARI) {a(n)=local(A=[2, 3], G=A); for(i=1, sqrt(n+1), G=A; for(k=2, 4*#binary(n), G=concat(G, Vec(Ser(A)^k)); G=vecsort(G, , 8) ); A=Vec(Ser(G) +x*O(x^n)) ); A[n]}
for(n=1, 80, print1(a(n), ", "))
CROSSREFS
Sequence in context: A030073 A115271 A189375 * A062923 A360363 A133464
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 05 2015
STATUS
approved