login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262940
G.f. satisfies: [x^n] A(x)^(2^m) = 2^m, where m = A007814(n+1) is the highest exponent of 2 dividing n+1, for n>=0.
2
1, 1, 1, -3, 1, 3, 1, 21, 1, -21, 1, 255, 1, -255, 1, 478677, 1, -478677, 1, 7152407, 1, -7152407, 1, -1291535081, 1, 1291535081, 1, -21021866227, 1, 21021866227, 1, 8367123104756933, 1, -8367123104756933, 1, 125486744208053623, 1, -125486744208053623, 1, -22639240870533272321, 1, 22639240870533272321, 1, -368298497943774746859, 1, 368298497943774746859, 1, -1120119534438107659394201, 1, 1120119534438107659394201
OFFSET
0,4
LINKS
FORMULA
a(2*n) = 1 for n>=0.
a(4*n+1) = -a(4*n-1) for n>0.
Coefficient of x^k in A(x)^(2^n) equals 2^n at k = m*2^(n+1) + 2^n - 1 for m>=0.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 - 3*x^3 + x^4 + 3*x^5 + x^6 + 21*x^7 + x^8 - 21*x^9 + x^10 + 255*x^11 + x^12 - 255*x^13 + x^14 + 478677*x^15 + x^16 +...
The coefficients in A(x)^n begin:
n=1: [1, 1, 1, -3, 1, 3, 1, 21, 1, -21, 1, 255, ...];
n=2: [1, 2, 3, -4, -3, 2, 19, 44, 29, 2, -153, 512, ...];
n=3: [1, 3, 6, -2, -9, -9, 40, 102, 117, 51, -354, 504, ...];
n=4: [1, 4, 10, 4, -13, -32, 44, 200, 341, 220, -586, 4, ...];
n=5: [1, 5, 15, 15, -10, -64, 10, 310, 775, 755, -679, -1305, ...];
n=6: [1, 6, 21, 32, 6, -96, -78, 372, 1443, 2030, -45, -3528, ...];
n=7: [1, 7, 28, 56, 42, -112, -224, 302, 2275, 4459, 2520, -5852, ...];
n=8: [1, 8, 36, 88, 106, -88, -412, 8, 3075, 8352, 8888, -5568, ...]; ...
where the coefficient of x^k in A(x)^(2^m) = 2^m where m = A007814(k+1) for k>=0, like so:
[x^0] A(x)^1 = 1;
[x^1] A(x)^2 = 2;
[x^2] A(x)^1 = 1;
[x^3] A(x)^4 = 4;
[x^4] A(x)^1 = 1;
[x^5] A(x)^2 = 2;
[x^6] A(x)^1 = 1;
[x^7] A(x)^8 = 8; ...
PROG
(PARI) {a(n) = local(A=[1, 1]); for(k=3, n+1, A=concat(A, 0); m=2^valuation(k, 2); A[k] = 1 - Vec(Ser(A)^m)[k]/m ); A[n+1]}
for(n=0, 64, print1(a(n), ", "))
CROSSREFS
Cf. A262939.
Sequence in context: A079412 A356655 A306861 * A278601 A281038 A263677
KEYWORD
sign,look
AUTHOR
Paul D. Hanna, Oct 04 2015
STATUS
approved