login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Right diagonal of A262881.
1

%I #11 Oct 05 2015 04:51:52

%S 0,1,2,3,3,5,6,7,7,7,7,11,11,13,14,15,15,15,15,15,15,15,15,23,23,23,

%T 23,27,27,29,30,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,47,47,

%U 47,47,47,47,47,47,55,55,55,55,59,59,61,62,63,63,63,63,63

%N Right diagonal of A262881.

%C It appears that the sequence of unique terms is A089633, and that their run lengths are 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, ...: A155038.

%t Last /@ Table[SortBy[Range@ k, And[Total@ IntegerDigits[#, 2], k] &], {k, 67}] (* _Michael De Vlieger_, Oct 04 2015 *)

%o (PARI) cmph(i, j) = if (hammingweight(i) != hammingweight(j), hammingweight(i) - hammingweight(j), i - j);

%o row(n) = my(v = vector(n+1, k, k-1)); vecsort(v, cmph);

%o lista(nn) = {for (n=0, nn, my(r = srow(n)); print1(r[#r], ", "););}

%Y Cf. A089633, A155038, A262881.

%K nonn,base

%O 0,3

%A _Michel Marcus_, Oct 04 2015