The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262796 Number of (1+2)X(n+2) 0..1 arrays with each row divisible by 5 and column not divisible by 5, read as a binary number with top and left being the most significant bits. 1
 0, 36, 76, 344, 2178, 15556, 82386, 479148, 2894976, 17686548, 104720692, 626126744, 3760257066, 22609447684, 135448403466, 812343844524, 4874677265880, 29255734010196, 175501301390140, 1052950222812440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row 1 of A262795. LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 9*a(n-1) -31*a(n-2) +117*a(n-3) +111*a(n-4) -3105*a(n-5) +11163*a(n-6) -44577*a(n-7) +54480*a(n-8) +312066*a(n-9) -1253202*a(n-10) +5661630*a(n-11) -10623030*a(n-12) -6302070*a(n-13) +44353650*a(n-14) -285745590*a(n-15) +608932635*a(n-16) -336973095*a(n-17) +17702745*a(n-18) +5906191005*a(n-19) -13283846169*a(n-20) +13243177431*a(n-21) -21990624909*a(n-22) -40461569577*a(n-23) +93075113494*a(n-24) -109367769060*a(n-25) +214864926232*a(n-26) +34835506992*a(n-27) -80389631520*a(n-28) +96467557824*a(n-29) -192935115648*a(n-30) EXAMPLE Some solutions for n=4 ..1..0..0..0..1..1....0..1..0..1..0..0....0..1..0..1..0..0....0..0..0..0..0..0 ..1..1..0..1..1..1....1..1..0..1..1..1....0..0..1..1..1..1....1..1..0..1..1..1 ..0..1..1..0..0..1....1..0..1..1..0..1....1..0..0..0..1..1....0..0..1..0..1..0 CROSSREFS Cf. A262795. Sequence in context: A171390 A034813 A319602 * A255101 A255094 A261284 Adjacent sequences: A262793 A262794 A262795 * A262797 A262798 A262799 KEYWORD nonn AUTHOR R. H. Hardin, Oct 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 18:28 EST 2024. Contains 370283 sequences. (Running on oeis4.)