login
A255094
Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 1 and no column sum 1.
1
36, 77, 179, 419, 991, 2345, 5537, 13105, 31063, 73591, 174311, 412949, 978301, 2317617, 5490567, 13007447, 30815207, 73002717, 172947085, 409720065, 970646871, 2299510047, 5447651751, 12905753661, 30574362581, 72432161761
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + 5*a(n-3) - 2*a(n-4) + 3*a(n-5) - 2*a(n-6) - 2*a(n-7) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) for n>12.
Empirical g.f.: x*(36 + 5*x + 61*x^2 - 42*x^3 + 19*x^4 - 67*x^5 - 58*x^6 - 52*x^7 - 26*x^8 + 24*x^9 + 38*x^10 - 2*x^11) / ((1 - x)*(1 - x - 5*x^3 - 3*x^4 - 6*x^5 - 4*x^6 - 2*x^7 + 2*x^9 + 2*x^10)). - Colin Barker, Dec 18 2018
EXAMPLE
Some solutions for n=4:
..1..1..1....0..1..1....1..1..1....1..1..0....1..1..1....1..0..1....1..1..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..1
..1..1..1....1..0..1....0..0..0....1..1..1....1..0..1....1..1..1....1..1..1
..0..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..0....1..0..1....0..1..1
..1..0..1....1..0..1....1..1..0....0..1..1....1..0..1....1..1..1....1..1..1
CROSSREFS
Column 1 of A255101.
Sequence in context: A319602 A262796 A255101 * A261284 A111163 A286430
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2015
STATUS
approved