login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(2*n+2,n)-2*binomial(2*n,n)+binomial(2*n-2,n).
0

%I #15 Sep 08 2022 08:46:14

%S 0,0,4,20,85,344,1365,5368,21021,82160,320892,1253240,4896034,

%T 19137104,74847175,292929840,1147223325,4496006880,17631691440,

%U 69189377400,271676550390,1067383059600,4195964793930,16503454480656,64943823784050,255687666536224

%N a(n) = binomial(2*n+2,n)-2*binomial(2*n,n)+binomial(2*n-2,n).

%F G.f.: (-2*x^3-3*x^2-2*x+1)/(2*x^2*sqrt(1-4*x))-1/(2*x^2)+1/2.

%F G.f. satisfies B'(x)*(1-x/B(x))^2, where B(x)+1 is g.f. of A000108.

%F a(n) = Sum_{k=0..n}(binomial(k,n-k)*2^(2*k-n)*binomial(n-1,k-2)).

%F Conjecture: -2*(n+2)*(49*n-95)*a(n) +325*(n-1)*(n+1)*a(n-1) +2*(67*n-38) *(2*n-5)*a(n-2)=0. - _R. J. Mathar_, Jun 07 2016

%t Table[Binomial[2 n + 2, n] - 2 Binomial[2 n, n] + Binomial[2 n - 2, n], {n, 0, 40}] (* _Vincenzo Librandi_, Oct 01 2015 *)

%o (Maxima)

%o B(x):=(1-sqrt(1-4*x))/(2*x)-1;

%o taylor(diff(B(x),x)*(1-x/B(x))^2,x,0,10);

%o (Magma) [Binomial(2*n+2,n)-2*Binomial(2*n,n)+Binomial(2*n-2,n): n in [0..30]]; // _Vincenzo Librandi_, Oct 01 2015

%o (PARI) a(n) = binomial(2*n+2,n)-2*binomial(2*n,n)+binomial(2*n-2,n);

%o vector (100, n, a(n-1)) \\ _Altug Alkan_, Oct 01 2015

%Y Cf. A000108.

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Sep 30 2015